Answer:
its how life meets water and earth meets air.
Explanation:
maximum static friction acting on the object will be

plug in all values

So here it means that if applied force is less than or equal to 58.8 N then the object will remain stationary as friction can balance the external force upto this limit of external force
So here it is given that applied force is 20 N
so here object will not move due to this force and it will remain at rest always
due to this applied force
Answer: To increase the rigidity of the system you could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.
Explanation:
When a rule is displaced from its vertical position, it oscillates back and forth because of the restoring force opposing the displacement. That is, when the rule is on the left there is a force to the right.
By holding a ruler with one hand and deforming it with the other a force is generated in the opposite direction which is known as the restoring force. The restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. The momentum gained causes the ruler to move to the right leading to opposite deformation. This moves the ruler again to the left. The whole process is repeated until dissipative forces reduce the motion causing the ruler to come to rest.
The relationship between restoring force and displacement was described by Hooke's law. This states that displacement or deformation is directly proportional to the deforming force applied.
F= -kx, where,
F= restoring force
x= displacement or deformation
k= constant related to the rigidity of the system.
Therefore, the larger the force constant, the greater the restoring force, and the stiffer the system.
-is made mostly of hydrogen and helium.
-will eventually run out of fuel and die.
-creates energy through nuclear reactions
Answer:
Archaeologist use radioactive isotopes to determine the ages of various objects, rocks and materials. This is called radioactive dating. Radioactive isotope Carbon-14 is widely used for this dating process.
Scientists use radioactive isotopes in agriculture to monitor or study the uptake and use of essential nutrients by plants from the soil. This helps to determine viability, productivity and nutritious ability of the plants on a piece of land.
Geologists use radioactive isotopes to trace leaks in underground water storage, pipes. Radioactive isotopes are effective tracers because their radioactivity can be easily detected.