Answer:
169.74 N
Explanation:
Given,
Mass of the girl = 30 Kg
angle of the rope with vertical, θ = 30°
equating the vertical component of the tension
vertical component of the tension is equal to the weight of the girl.
T cos θ = m g
T cos 30° = 30 x 9.8
T = 339.48 N
Tension on the two ropes is equal to 339.48 N
Tension in each of the rope = T/2
= 339.48/2 = 169.74 N
Hence, the tension in each of the rope is equal to 169.74 N
Answer:
The energy of an electron in an isolated atom depends on b. n only.
Explanation:
The quantum number n, known as the principal quantum number represents the relative overall energy of each orbital.
The sets of orbitals with the same n value are often referred to as an electron shell, in an isolated atom all electrons in a subshell have exactly the same level of energy.
The principal quantum number comes from the solution of the Schrödinger wave equation, which describes energy in eigenstates
, and for the case of an hydrogen atom we have:

Thus for each value of n we can describe the orbital and the energy corresponding to each electron on such orbital.
Answer:
P = 14700 J
Explanation:
Given that,
Mass of a piano, m = 75 kg
It is delivered throughout the window of a 6th story apartment which is 20 m above the ground.
We need to find the potential energy of the piano. It is given by :
P = mgh
Putting all the values,
P = 75 kg × 9.8 m/s² × 20 m
P = 14700 J
So, the potential energy of the piano is 14700 J.
Answer:
a. 7.38 N b. 40.87 N c. 0.113 kg-m²
Explanation: