Answer:

Explanation:
Given,
The angle of the slide=
The mass of the child is= m
coefficient of friction = 0.20
when she slides down now apply Newton's law


therefore the acceleration

![a=g[\sin \theta -\mu \cos \theta]](https://tex.z-dn.net/?f=a%3Dg%5B%5Csin%20%5Ctheta%20-%5Cmu%20%5Ccos%20%5Ctheta%5D)
![a=9.8\times [\sin 42^\circ -0.2\times \cos 42^\circ]](https://tex.z-dn.net/?f=a%3D9.8%5Ctimes%20%5B%5Csin%2042%5E%5Ccirc%20-0.2%5Ctimes%20%5Ccos%2042%5E%5Ccirc%5D)

hence, the magnitude of acceleration during her sliding is equal to 
To make sure that we have enough resourses to sustain ourselves. You see, if we use up, say, all water on earth, then obviously we won't have any more and we'll die.
Answer:
The correct answer is - option C. G.
Explanation:
In this reaction diagram, there is a representation of the reaction profile. The reaction profile shows the change that takes place during a reaction in the energy of reactants or substrate and products. In this profile, activation energy looks like a hump in the line, and the minimum energy required to initiate the reaction.
The overall energy of the reaction, including or excluding activation energy depends on the nature of the reaction if it is exothermic or endothermic. and products are represented by the G which shows the difference between the energy of the reactants and products.
Given :
A mover slides a refrigerator weighing 650 N at a constant velocity across the floor a distance of 8.1 m.
The force of friction between the refrigerator and the floor is 230 N.
To Find :
How much work has been performed by the mover on the refrigerator.
Solution :
Since, refrigerator is moving with constant velocity.
So, force applied by the mover is also 230 N ( equal to force of friction ).
Now, work done in order to move the refrigerator is :

Hence, this is the required solution.
Answer: a) 19.21m b) 3.92secs
Explanation:
a) Maximum height reached by the object is the height reached by an object before falling freely under gravity.
Maximum height = U²/2g
U is the initial velocity = 19.6m/s
g is acceleration due to gravity = 10m/s²
Maximum Height = 19.6²/2(10)
H = 19.21m
b) The time elapsed before the stone hits the ground is the time of flight T= 2U/g
T= 2(19.6)/10
T = 39.2/10
Time elapsed is 3.92secs