Answer:
The radius of the curve is 9,183.67 m.
Explanation:
Given;
velocity of the jet plane, v = 600 m/s
acceleration of the jet plane, a = 4g = 4 x 9.8 m/s² = 39.2 m/s²
The radius of the curve is calculated from centripetal acceleration formula as given below;

Therefore, the radius of the curve is 9,183.67 m.
Answer:
Option B. 5 nC
Explanation:
From the question given above, the following data were obtained:
Capicitance (C) = 100 pF
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:
1 pF = 1×10¯¹² F
Therefore,
100 pF = 100 pF × 1×10¯¹² F / 1 pF
100 pF = 1×10¯¹⁰ F
Next, we shall determine the quantity of charge. This can be obtained as follow:
Capicitance (C) = 1×10¯¹⁰ F
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Q = CV
Q = 1×10¯¹⁰ × 50
Q = 5×10¯⁹ C
Finally, we shall convert 5×10¯⁹ C to nano coulomb (nC). This can be obtained as follow:
1 C = 1×10⁹ nC
Therefore,
5×10¯⁹ C = 5×10¯⁹ C × 1×10⁹ nC / 1 C
5×10¯⁹ C = 5 nC
Thus, the quantity of charge is 5 nC
The statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.
<h3>What is mass-energy equivalence?</h3>
The expression mass-energy equivalence refers to the proportion of matter that can be converted into energy in the universe.
This mass-energy equivalence is an outcome of process of converting mass into energy.
In conclusion, the statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.
Learn more about mass-energy equivalence here:
brainly.com/question/3171044
#SPJ1
Answer:
Magnets are employed to generate electricity.
Explanation:
Magnets' characteristics are employed to generate electricity. Electrons are pulled and pushed by moving magnetic fields. When you move a magnet around a coil of wire, or a coil of wire around a magnet, the electrons in the wire are pushed out and an electrical current is created.
Answer:
a Charge flows along a complete conducting path
Explanation: