Answer:

Explanation:
The products of this reaction are given by:

Firstly, dichromate anion becomes chromium(III) cation, let's write this change:

The following steps should be taken:
- balance the main element, chromium: multiply the right side by 2 to get 2 chromium species on both side:

- balance oxygen atoms by adding 7 water molecules on the right:

- balance the hydrogen atoms by adding 14 protons on the left:

- balance the charge (the total net charge on the left is 12+, on the right we have 6+, so 6 electrons are needed on the left):

Similarly, tin(II) cation becomes tin(IV) cation:

Now that we have the two half-equations, multiply the second one by 3, so that it also has 6 electrons that will be cancelled out upon addition of the two half-equations:


Add them together:

Adding the ions spectators:

The geosphere is where the earths crust, mantle, etc take place. Geosphere is where all the rocks take place in the earth.
Please mark as brainliest!
0.25 moles of CO2 is present in 11 grams of CO2.
Explanation:
A mole represents the number of chemical entities in an element or molecule.
Number of moles of an element or molecule is determined by the formula:
The Number of moles (n) = weight of the atom given ÷ atomic or molecular weight of the one mole of the element or molecule.
Themolar mass of one mole of carbon dioxide is:
12+ ( 16×2)
= 44 gram/mole
The given weight is 44 grams of carbon dioxide.
Putting the values in the equation,
n= 11 gms÷44 gms/ mole
n = 0.25 mole
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.