<h3>
Answer:</h3>
Gas law : Boyle's law
New pressure: 66.24 atm
<h3>
Explanation:</h3>
Concept tested: Gas laws (Boyle's law)
<u>We are given,</u>
- Initial pressure, P₁ = 2.86 atm
- Initial volume, V₁ = 8472 mL
- New volume, V₂ IS 365.8 mL
We need to determine the new pressure, P₂
- According to Boyle's law , the volume of a fixed mass of a gas and the pressure are inversely proportional at constant temperature.
- That is,

- This means , PV = k (constant)
- Therefore; P₁V₁ = P₂V₂
- Rearranging the formula, we can get the new pressure, P₂
P₂ = P₁V₁ ÷ V₂
= (2.86 atm × 8472 mL) ÷ 365.8 mL
= 66.24 atm
Therefore, the new pressure is 66.24 atm
I think the correct answer from the choices listed above is option A. The structural level of a protein least affected by a disruption in hydrogen bonding is the primary level. The other levels are very much affected by hydrogen bonding. Hope this answers the question.
Answer:
there are 78 organs and 4 tissue in the body so organ
Answer:
See explanation
Explanation:
In this case, we have to remember the meaning of the nomenclature "18:2Δ9,12". Where 18 is the <u>number of carbon atom</u>s, 2 is the <u>number of double bonds,</u> and the numbers successive to Δ "delta" the position of the double bonds <u>starting</u> to count from the carboxylic -COOH end of the molecule.
In other words, the main functional group is a <u>carboxylic acid</u>. We have a total of 18 carbons. Additionally, we have 2 double bonds. On carbons 9 and 12.
Lets see figure 1
I hope it helps!