Answer:
The potential difference between the ends of a wire is 60 volts.
Explanation:
It is given that,
Resistance, R = 5 ohms
Charge, q = 720 C
Time, t = 1 min = 60 s
We know that the charge flowing per unit charge is called current in the circuit. It is given by :
I = 12 A
Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :
V = IR
V = 60 Volts
So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.
Answer:
i font know ewan madaling sabihin yan
Answer:
The vapor pressure at 60.6°C is 330.89 mmHg
Explanation:
Applying Clausius Clapeyron Equation
![ln(\frac{P_2}{P_1}) = \frac{\delta H}{R}[\frac{1}{T_1}- \frac{1}{T_2}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%20%3D%20%5Cfrac%7B%5Cdelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%20%5Cfrac%7B1%7D%7BT_2%7D%5D)
Where;
P₂ is the final vapor pressure of benzene = ?
P₁ is the initial vapor pressure of benzene = 40.1 mmHg
T₂ is the final temperature of benzene = 60.6°C = 333.6 K
T₁ is the initial temperature of benzene = 7.6°C = 280.6 K
ΔH is the molar heat of vaporization of benzene = 31.0 kJ/mol
R is gas rate = 8.314 J/mol.k
![ln(\frac{P_2}{40.1}) = \frac{31,000}{8.314}[\frac{1}{280.6}- \frac{1}{333.6}]\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.003564 - 0.002998)\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.000566)\\\\ln(\frac{P_2}{40.1}) = 2.1104\\\\\frac{P_2}{40.1} = e^{2.1104}\\\\\frac{P_2}{40.1} = 8.2515\\\\P_2 = (40.1*8.2515)mmHg = 330.89 mmHg](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%20%5Cfrac%7B31%2C000%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B280.6%7D-%20%5Cfrac%7B1%7D%7B333.6%7D%5D%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%280.003564%20-%200.002998%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%20%280.000566%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%202.1104%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%20e%5E%7B2.1104%7D%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%208.2515%5C%5C%5C%5CP_2%20%3D%20%2840.1%2A8.2515%29mmHg%20%3D%20330.89%20mmHg)
Therefore, the vapor pressure at 60.6°C is 330.89 mmHg
Answer:
i think its D but i could be wrong im sorry if i am
Explanation:
edge 2020