Answer: Hello mate!
lets define the north as the y-axis and east as the x-axis.
Using the notation (x,y) we can define the initial position of the car as (0,0)
then the car travells 13 mi east, so now the position is (13,0)
then the car travels Y miles to the north, so the position now is (13, Y)
and we know that the final position is 25° degrees north of east of the initial position. This angle says that the distance traveled to the north is less than 13 mi because this angle is closer to the x-axis (or east in this case).
This angle is measured from east to north, then the adjacent cathetus is on the x-axis, in this case, 13mi
And we want to find the distance Y, so we can use the tangent:
Tan(25°) = Y/13
tan(25°)*13 mi = Y = 6.06 mi.
Yes the velocity changes. Because velocity changes with direction. The object is moving around a gentle curve. The curve is not linear it is curve the direction changes a bit so obviously the velocity also changes but not much. Juts a minor change. Depends on how much curve the highway is.
Answer:
1716.75 J
Explanation:
<u>Step </u><u>1</u><u>:</u> First check what we are provided with. As per given question we have:
mass (m) = 70 kg, height (h) = 2.5 m and acceleration due to gravity (g) = 9.81 m/s².
<u>Step</u><u> </u><u>2</u><u>:</u> Check what we are asked to find out.
Work done = Change in Potential energy
The stuff required to solve this question is potential energy. Using the formula: P = mgh. Where P is Potential energy, m is mass, g is acceleration due to gravity and h is height.
<u>Step</u><u> </u><u>3</u><u>:</u> Substitute the known values in the above formula.
→ P = 70 × 2.5 × 9.81
→ P = 1716.75 J
Hence, the work done against the force of gravity is 1716.75 J.
When the life preserver is dropped from the helicopter, the only force acting on the object is the gravitational force. This modifies the equations of motion. Thus, the working equation is written below:
h = vt + 0.5gt²
where
v is the initial velocity
g is the acceleration due to gravity equal to 9.81 m/s²
h is the height of the fall
h = (1.46 m/s)(1.8 s) + 0.5(9.81 m/s²)(1.8 s)
h = 11.457 m
Answer:
She should use a measuring tape
Explanation:
A student measures her height with a meter stick and gets a result of 1.5 m tall. This may not be as accurate as possible due to the fact that a meter stick has a maximum length of 1m which means an error could have occurred when she had to mark a point and then measure the remaining 0.5m.
She can however measure her height with greater accuracy and precision with a meter tape which has a wider measurement range and there won’t be any need to measure twice.