Answer:
I'm gonna go with compund
<h2>
Hello!</h2>
The answer is:
The kinetic energy of the object is equal to 85 J.
<h2>
Why?</h2>
The kinetic energy involves the speed and the mass of an object in motion. We can calculate the following the work needed to speed an object (kinetic energy) using the equation:

Where,
m, is the mas of the object
v, is the speed of the object.
Now, we are given:

So, substituting and calculating the kinetic energy of the object, we have:




We have that the kinetic energy of the object is equal to 85 J.
Have a nice day!
Given:
Object in circular motion 25 m/s
1 second to go quarter circle
Required:
Centripetal acceleration:
Solution:
Acceleration = v2/r
Where v is the velocity and r is
the radian
Substituting the values into the
equation,
Acceleration = v2/r = (25
m/s)2/(4*pi/180) = 8952.47 m2/s2
<span>Matching the boundary with its characteristics
1. Convergent - C. Compression
2. Divergent - B. Along ocean ridges
3. Transform - A. Along strike-slip faults
The compression that occur in the convergent boundary causes the reverse fault in the earth crust.
So in the divergent boundary two crust plates move apart causing a normal fault along the ocean ridges.
The faults in the transform boundary happens at the place where plates slide laterally.</span>