Complete Question:
Ions to calculate the p-values: Na⁺, Cl⁻, and NH₄⁺
Answer:
pNa = 0.307
pCl = 0.093
pNH₄ = 0.503
Explanation:
The p-value is calculated by the antilog of the concentration of the substance of interest. For example, pH = -log[H⁺]. Thus, first, let's find the ions concentration.
Both substances are salts that solubilize completely, thus, by the solution reactions:
NaCl → Na⁺ + Cl⁻
NH₄Cl → NH₄⁺ + Cl⁻
So, for both reactions the stoichiometry is 1:1:1 and the concentration of the ions is equal to the concentration of the salts.
[Na⁺] = 0.493 M
[Cl⁻] = 0.493 + 0.314 = 0.807 M
[NH₄⁺] = 0.314 M
The p-values are:
pNa = -log[Na⁺] = -log(0.493) = 0.307
pCl = -log[Cl⁻] = -log(0.807) = 0.093
pNH₄ = -log[NH₄⁺] = -log(0.314) = 0.503
Answer:
E) All of the above.
Explanation:
Hello,
Since the acidic nature of the HCl implies its corrosiveness, when it is in contact with the skin and eyes the burning starts immediately, so gloves and goggles must be worn. Next, the fuming hydrochloric acid (37% by mass) is volatile so it gives off even when dissolved into water, so it must be used in the fume hood. Then, since vapors are produced during the chemical reaction, an overpressure could be attained, that's why we must keep the glass sash of the fume hood between us and the vial. As a common risk, the vial could be dropped causing the hydrochloric acid to splash, so we must keep the vial well inside the hood.
Best regards.
-Photons are absorbed by hot gas atoms
-Energy is transferred through large-scale movement of material
-Energy is released into the photosphere