Hello,
Your questions states:
During a change of state, the temperature of a substance _____?
In which you gave us some choices:
A. decreases if the arrangement of particles in the substance changes.
B. remains constant until the change of state is complete.
C. increases if the kinetic energy of the particles in the substance increases.
D. increases during melting and vaporization and decreases during freezing and condensation.
Your answer would be:
B. remains constant until the change of state is complete.
Your explanation/Reasoning:
It absorbs the energy, then after the phase changes it then increases the temperature all over again.
Have a nice day:)
Hope this helps!
~Rendorforestmusic
<h3><u>Answer</u>;</h3>
Actual yield = 46.44 g
<h3><u>Explanation;</u></h3>
1 mole of water = 18 g/mol
Therefore;
The experimental yield = 2.58 moles
equivalent to ; 2.58 × 18 = 46.44 g
The theoretical value is 47 g
Percentage yield = 46.44/47 × 100%
= 98.8%
The questions asks for actual yield = 46.44 g
Depression of a freezing point of the solutions depends on the number of particles of the solute in the solution.
1 mol of C6H12O6 after dissolving in water still be 1 mol, because C6H12O6 does no dissociate in water.
1 mol of C2H5OH after dissolving in water still be 1 mol, because C2H5OH does no dissociate in water.
1 mol of NaCl after dissolving in water gives 2 mol of particles (ions), because NaCl is a strong electrolyte(as salt) and completely dissociates in water.
NaCl ----->Na⁺ + Cl⁻
1 mol of CH3COOH after dissolving in water gives more than 1 mol but less than 2 moles, because CH3COOH is a weak electrolyte (weak acid) and dissociates only partially.
So, most particles of the solute is going to be in the solution of NaCl,
so<span> the lowest freezing point has the aqueous solution of NaCl.</span>
Hope this helps :) remember your conversions and just practice it's fairly easy:)