Answer:
0.077M is the concentration of the hydroxyl ion
Explanation:
Dilution factor is the ratio between the aliquot that is taken of a solution and the total volume of the diluted solution.
For the problem, dilution factor is:
7.53cm³ / 147cm³ =<em> 0.05122</em>
To obtain molarity of a diluted solution you must multiply dilution factor and initial molarity of the solution, thus:
1.5 M × 0.05122 = <em>0.077M is the concentration of the hydroxyl ion</em>
Answer: Option (d) is the correct answer.
Explanation:
It is known that length of a bond is inversely proportional to the bond strength. This also means that a single bond has long length due to which it is weak in nature.
And, a double bond is shorter in length and has more strength as compared to a single bond. Whereas a triple bond has the smallest length and it has high strength as compared to a double or single bond.
For example, carbon monoxide is CO where there is a triple bond between the carbon and oxygen atom.
Carbon dioxide is
where there exists a double bond between the carbon and oxygen atom.
A carbonate ion is
when two oxygen atoms are attached through single bond with the carbon atom and another oxygen atom is attached through a double bond to the carbon atom.
Hence, we can conclude that order of increasing bond strength of the given carbon oxygen bond is as follows.
Carbonate ion < carbon dioxide < carbon monoxide
A) heating a pan of water until the water is all gone because then it would change from a liquid top a gas.
Unsaturated organic compounds with a carbon-to-carbon double bond and alkynes with a carbon-to-carbon triple bond, as well as aldehydes and ketones with a carbon-to-oxygen double bond, undergo addition reactions.
The periodic table of elements arranges all of the known chemical elements in an informative array. Elements are arranged from left to right and top to bottom in order of increasing atomic number. Order generally coincides with increasing atomic mass. The rows are called periods.