Answer:
However, when formal units are used to measure length, the measurement can usually be read from a scale on a ruler or tape, which shows units of a particular size. Unit iteration involves knowledge of repeatedly placing identical tightly packing units so that there are no overlaps or gaps.
Explanation:
When placed in a container, the heaviest (most dense) will sink to the bottom and the lightest (least dense) will rise to the top.
Therefore, Gasoline would rise to the top.
<span>0.0687 m
The balanced equation is
BaCl2 + Na2SO4 ==> BaSO4 + 2 NaCl
Looking at the equation, it indicates that there's a 1 to 1 ratio of BaCl2 and Na2SO4 in the reaction. So the number of moles of each will be equal. Now calculate the number of moles of Na2SO4 we had. Start by looking up atomic weights.
Atomic weight sodium = 22.989769
Atomic weight sulfur = 32.065
Atomic weight oxygen = 15.999
Molar mass Na2SO4 = 2 * 22.989769 + 32.065 + 4 * 15.999 = 142.040538 g/mol
Moles Na2SO4 = 0.554 g / 142.040538 g/mol = 0.003900295 mol
Molarity is defined as moles per liter, so let's do the division.
0.003900295 mol / 0.0568 l = 0.068667165 mol/l = 0.068667165 m
Rounding to 3 significant figures gives 0.0687 m</span>
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16