Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////
Answer:
191.6 g of CaCl₂.
Explanation:
What is given?
Mass of HCl = 125.9 g.
Molar mass of CaCl₂ = 110.8 g/mol.
Molar mass of HCl = 36.4 g/mol.
Step-by-step solution:
First, we have to state the chemical equation. Ca(OH)₂ react with HCl to produce CaCl₂:

Now, let's convert 125.9 g of HCl to moles using the given molar mass (remember that the molar mass of a compound can be found using the periodic table). The conversion will look like this:

Let's find how many moles of CaCl₂ are being produced by 3.459 moles of HCl. You can see in the chemical equation that 2 moles of HCl reacted with excess Ca(OH)₂ produces 1 mol of CaCl₂, so we state a rule of three and the calculation is:

The final step is to find the mass of CaCl₂ using the molar mass of CaCl₂. This conversion will look like this:

The answer would be that we're producing a mass of 191.6 g of CaCl₂.
Answ????
Explanation:
confused confused confused
In order to solve this question, we must apply the conservation of mass. The total number of nucleons (upper number) and protons (lower number) must be equal before and after the decay. The new nucleon number is
218 - 4
= 214
And new proton number is
84 - 2
= 82
Next, we must identify which element has the proton number 82. That would be lead, Pb.
Therefore, the answer is
5. ²¹⁴Pb₈₂
No... From blossom. Is your answer