Answer: 3.0 kJ × 1 mol/40.65 kJ× 18.02 g/mol × 1 mL/1 g= 1.3 mL
1s2 2s2 2p6 3s2 3p6 4s2 is the electron configuration for Calcium
In 1 mole of magnesium there are Avogadro's number of atoms are present.
Avogadro's number = 6.023 x 10²³
1 mole = 6.023 x 10²³ atoms
3.75 moles = 3.75 x 6.023 x 10²³
=2.26 x 10²⁴
So, in 3.75 moles of magnesium there are 2.26 x 10²⁴ atoms of magnesium are present.
Answer:
The answer is 5.7 minutes
Explanation:
A first-order reaction follow the law of
. Where <em>[A]</em> is the concentration of the reactant at any <em>t</em> time of the reaction,
is the concentration of the reactant at the beginning of the reaction and <em>k</em> is the rate constant.
Dropping the concentration of the reactant to 6.25% means the concentration of A at the end of the reaction has to be
. And the rate constant (<em>k</em>) is 8.10×10−3 s−1
Replacing the equation of the law:
![Ln \frac{6.25}{100}.[A]_{0} = -8.10x10^{-3}s^{-1}.t + Ln[A]_{0}](https://tex.z-dn.net/?f=Ln%20%5Cfrac%7B6.25%7D%7B100%7D.%5BA%5D_%7B0%7D%20%3D%20-8.10x10%5E%7B-3%7Ds%5E%7B-1%7D.t%20%2B%20Ln%5BA%5D_%7B0%7D)
Clearing the equation:
![Ln [A]_{0}.\frac{6.25}{100} - Ln [A]_{0} = -8.10x10^{-3}s^{-1}.t](https://tex.z-dn.net/?f=Ln%20%5BA%5D_%7B0%7D.%5Cfrac%7B6.25%7D%7B100%7D%20-%20Ln%20%5BA%5D_%7B0%7D%20%3D%20-8.10x10%5E%7B-3%7Ds%5E%7B-1%7D.t)
<em>Considering the property of logarithms: </em>
Using the property:
![Ln \frac{[A]_{0}}{[A]_{0}}.\frac{6.25}{100} = -8.10x10^{-3}s^{-1}.t](https://tex.z-dn.net/?f=Ln%20%5Cfrac%7B%5BA%5D_%7B0%7D%7D%7B%5BA%5D_%7B0%7D%7D.%5Cfrac%7B6.25%7D%7B100%7D%20%3D%20-8.10x10%5E%7B-3%7Ds%5E%7B-1%7D.t)
Clearing <em>t </em>and solving:

The answer is in the unit of seconds, but every minute contains 60 seconds, converting the units:

Answer:
only thing close I can see would be aluminun
Explanation:
atomic number of 13 and 8 2nd electrons in its shell.