The balanced reaction
is:
4NH3 + 3O2 --> 2N2 + 6H2O
<span>We
are given the amount of reactants to be used for the reaction. This
will be the starting point of our calculation.</span>
83.7g of O2 ( 1 mol / 32 g) = 2.62 mol O2
2.81 moles of NH3
From the balanced reaction, we have a 4:3 ratio of the reactants. The limiting reactant would be oxygen. We will use the amount for oxygen for further calculations.
<span>2.62 mol O2</span><span> (6 mol H2O / 3 mol O2) (18.02 g H2O / 1 mol H2O) = 94.42 g H2O</span>
We know that, M1V1 = M2V2
(Initial) (Final)
where, M1 and M2 are initial and final concentration of soution respectively.
V1 and V2 = initial and final volume of solution respectively
Given: M1 = 12 m, V1 = 35 ml and V2 = 1.2 l = 1200 ml
∴ M2 = M1V1/V2 = (12 × 35)/ 1200 = 0.35 m
Final concentration of solution is 0.35 m
Answer:
of PABA is 0.000022
Explanation:

cM 0 0

So dissociation constant will be:

Give c= 0.055 M and
= ?

![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![2.96=-log[H^+]](https://tex.z-dn.net/?f=2.96%3D-log%5BH%5E%2B%5D)
![[H^+]=1.09\times 10^{-3}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.09%5Ctimes%2010%5E%7B-3%7D)
![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)


Putting in the values we get:


Thus
of PABA is 0.000022