The answer of this question is
A.kg
Answer:
The correct answer is "The reactions stop once equilibrum is achieved"
Explanation:
A system is said to have attained equilibrium when the rate of forward reaction is the same/equal to the rate of backward reaction. The reaction below shows a chemical reaction that is at equilibrium
2N₂O₅ (aq) ⇄ 4NO₂ (aq) + O₂ (aq)
An equilibrium reaction is always a reversible reaction. <u>When the system is at equilibrium (when there is a balance), the concentration of the reactants and products do not change despite the fact that reaction does not stop</u>; what happens however is that the rate at which the reactant(s) are formed (backward reaction) will be equal to the rate at which the product(s) are formed (forward reaction).
From the explanation above, it can be deduced that "The reactions stop once equilibrum is achieved" is a misconception about a system in chemical equilibrium.
Exactly the same way that you can photograph a mountain or a skyscraper
with the itty bitty camera in your smartphone.
Lenses are used to form a tiny image of a gigantic object.
Answer:
False
Explanation:
Though fiber active cable is based on the concept of internal reflection but it is achieved by refractive index which transmit data through fast traveling pulses of light. It has a layer of glass and insulating casing called “cladding,”and this is is wrapped around the central fiber thereby causing light to continuously bounce back from the walls of the Cable.
Answer:
<em>Answer A. Fission, steam, turbine, electricity, cool water</em>
Explanation:
<u>Nuclear Energy Production
</u>
Nuclear energy is produced by splitting uranium atoms in a process called fission. This generates heat and it's managed to produce steam, which later is used by a turbine generator to generate electricity. The heat must be taken out of the system, so a cooling process, usually involving water is the final step.
Because nuclear power plants don't burn fuel, they are known as clean energy sources.
Answer A. Fission, steam, turbine, electricity, cool water