Answer: Chemical → Mechanical → Electrical → Radiant
Explanation:
First, the Hamster eats the carrot, then the hamster is getting chemical energy.
Now the hamster starts using his wheel, then he "transforms" the chemical energy into mechanical energy.
Now the mechanical energy is connected to a generator, this means that the mechanical energy (the rotation of the wheel) is being converted into electrical energy.
And we know that there is a light bulb powered by this electrical energy, then we have electrical energy being transformed into radiant energy.
Then the correct option is:
Chemical → Mechanical → Electrical → Radiant
Answer:
No the given statement is not necessarily true.
Explanation:
We know that the kinetic energy of a particle of mass 'm' moving with velocity 'v' is given by

Similarly the momentum is given by 
For 2 particles with masses
and moving with velocities
respectively the respective kinetic energies is given by


Similarly For 2 particles with masses
and moving with velocities
respectively the respective momenta are given by


Now since it is given that the two kinetic energies are equal thus we have

Thus we infer that the moumenta are not equal since the ratio on right of 'i' is not 1 , and can be 1 only if the velocities of the 2 particles are equal which becomes a special case and not a general case.
Answer:
10 km/hr/s
Explanation:
The acceleration of an object is given by

where
v is the final velocity
u is the initial velocity
t is the time
For the car in this problem:
u = 0

t = 6 s
Substituting in the equation,

Entropy is an extensive property of a thermodynamic system. It quantifies the number Ω of microscopic configurations (known as microstates) that are consistent with the macroscopic quantities that characterize the system (such as its volume, pressure and temperature).[1] Under the assumption that each microstate is equally probable, the entropy
S
S is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant