Answer:

and

Explanation:
Given:
- first charge,

- second charge,

- position of first charge,

- position of second charge,

Now since there are only 2 charges and of the same sign so they repel each other. This repulsion will be zero at some point on the line joining the charges.
<u>Now, according to the condition, electric field will be zero where the effects of field due to both the charges is equal.</u>

- since first charge is greater than the second charge so we may get a point to the right of the second charge and the distance between the two charges is 1 meter.





Since we have assumed that the we may get a point to the right of second charge so we calculate with respect to the origin.

and

<span>At the center of the sun, fusion converts hydrogen into helium, neutrinos and another thing that I forgot =/</span>
Answer:
1.95 kg
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
0 = (74.9) (-0.215) + m (8.25)
m = 1.95
Answer:
All three pendulum will attain same velocity
Explanation:
All three pendulum will attain same velocity irrespective of their mass difference in isolated system (means where air drag are negligible) and at same length
As you know when velocity is calculated we can not take mass into account.
To solve this problem we will apply the concepts related to wavelength, as well as Rayleigh's Criterion or Optical resolution, the optical limit due to diffraction can be calculated empirically from the following relationship,

Here,
= Wavelength
d= Diameter of aperture
= Angular resolution or diffraction angle
Our values are given as,

The frequency of the sound is 
The speed of the sound is 
The wavelength of the sound is

Here,
v = Velocity of the wave
f = Frequency
Replacing,


The diffraction condition is then,

Replacing,

d = 0.24 m
Therefore the diameter should be 0.24m