The final atmospheric pressure is 
Explanation:
Assuming that the temperature of the air does not change, we can use Boyle's law, which states that for a gas kept at constant temperature, the pressure of the gas is inversely proportional to its volume. In formula,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

where in our problem we have:
is the initial pressure (the atmospheric pressure at sea level)
is the initial volume
is the final pressure
is the final volume
Solving the equation for p2, we find the final pressure:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Let the mass of 2500 kg car be
and it's velocity be
and the mass of 1500 kg car be
and it's velocity be
.
After the bumping the mass be M and it's velocity be V.
By law of conservation of momentum we have

2500 * 5 + 1500 * 1=4000 * V
V = 14000/4000 = 7/2 = 3.5 m/s
So the velocity of the two-car train = 3.5 m/s
Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m