Answer:
A. smallest wire is No. 12
Answer:
Explanation:
cross sectional area A = 1.9 x 2.6 x 10⁻⁶ m²
= 4.94 x 10⁻⁶ m²
stress = 42 x 9.8 / 4.94 x 10⁻⁶
= 83.32 x 10⁶ N/m²
strain = .002902 / 2.7
= 1.075 x 10⁻³
Young's modulus = stress / strain
= 83.32 x 10⁶ / 1.075 x 10⁻³
= 77.5 x 10⁹ N/m²
Answer:
Bore = 7 cm
stroke = 6.36 cm
compression ratio = 10.007
Explanation:
Given data:
Cubic capacity of the engine, V = 245 cc
Clearance volume, v = 27.2 cc
over square-ratio = 1.1
thus,
D/L = 1.1
where,
D is the bore
L is the stroke
Now,
V = 
or
V = 
on substituting the values, we have
245 = 
or
D = 7.00 cm
Now,
we have
D/L = 1.1
thus,
L = D/1.1
L = 7/1.1
or
L= 6.36 cm
Now,
the compression ratio is given as:

on substituting the values, we get

or
Compression ratio = 10.007
Answer:
IDK
Explanation:
same thing is happening to me
Answer:
Fcte10 < Fcte01 = Fcte0 < Fctm11 < Fcte21 = Fctm21 < Fcte12 = Fctm12 < Fcte22
Explanation:
Assuming a = 2b
Attached below is the required steps to the solution
The cutoff frequencies for the first ten modes of a rectangular waveguide listed in ascending order is :
Fcte10 < Fcte01 = Fcte0 < Fctm11 < Fcte21 = Fctm21 < Fcte12 = Fctm12 < Fcte22