Answer:
a) 42.08 ft/sec
b) 3366.33 ft³/sec
c) 0.235
d) 18.225 ft
e) 3.80 ft
Explanation:
Given:
b = 80ft
y1 = 1 ft
y2 = 10ft
a) Let's take the formula:

1 + 8f² = (20+1)²
= 8f² = 440
f² = 55
f = 7.416
For velocity of the faster moving flow, we have :
V1 = 42.08 ft/sec
b) the flow rate will be calculated as
Q = VA
VA = V1 * b *y1
= 42.08 * 80 * 1
= 3366.66 ft³/sec
c) The Froude number of the sub-critical flow.
V2.A2 = 3366.66
Where A2 = 80ft * 10ft
Solving for V2, we have:
= 4.208 ft/sec
Froude number, F2 =
F2 = 0.235
d)
= 18.225ft
e) for critical depth, we use :
= 3.80 ft
Answer:
Answer with Explanation is in the following attachments.
Explanation:
The system includes a disk rotating on a frictionless axle and a bit of clay transferring towards it, as proven withinside the determine above.
<h3>What is the
angular momentum?</h3>
The angular momentum of the device earlier than and after the clay sticks can be the same.
Conservation of angular momentum the precept of conservation of angular momentum states that the whole angular momentum is usually conserved.
- Li = Lf where;
- li is the preliminary second of inertia
- If is the very last second of inertia
- wi is the preliminary angular velocity
- wf is the very last angular velocity
- Li is the preliminary angular momentum
- Lf is the very last angular momentum
Thus, the angular momentum of the device earlier than and after the clay sticks can be the same.
Read more about the frictionless :
brainly.com/question/13539944
#SPJ4
Answer:
a)
, b) Yes.
Explanation:
a) The maximum thermal efficiency is given by the Carnot's Cycle, whose formula is:


b) The claim of the inventor is possible since real efficiency is lower than maximum thermal efficiency.