Answer:

Explanation:
For this case we can use the second law of Newton given by:

The friction force on this case is defined as :

Where N represent the normal force,
the kinetic friction coeffient and a the acceleration.
For this case we can assume that the only force is the friction force and we have:

Replacing the friction force we got:

We can cancel the mass and we have:

And now we can use the following kinematic formula in order to find the distance travelled:

Assuming the final velocity is 0 we can find the distance like this:

Answer:
10.6 mA
Explanation:
t = time interval = 1.00 s
q = magnitude of charge on each ion = 1.6 x 10⁻¹⁹ C
n₁ = number of Na⁺ ions = 2.68 x 10¹⁶
q₁ = charge due to Na⁺ ions = n₁ q = (2.68 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.004288 C
n₂ = number of Cl⁻ ions = 3.92 x 10¹⁶
q₂ = charge due to Cl⁻ ions = n₂ q = (3.92 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.006272 C
i₁ = Current due to Na⁺ ions =
=
= 0.004288 A
i₂ = Current due to Cl⁻ ions =
=
= 0.006272 A
Current passing between the electrodes is given as
i = i₁ + i₂
i = 0.004288 + 0.006272
i = 0.01056 A
i = 10.6 x 10⁻³ A
i = 10.6 mA
peer-to-peer networks
Explanation:
Networks designed to connects similar computers that shares data and software with each other are called peer-to-peer networks.
These networks are closely around and do not rely on information passing through a central data point.
- In a peer to peer connection, the computers have direct access to one another.
- The computers over the network becomes both client and server.
learn more:
Machines on public network brainly.com/question/10338479
#learnwithBrainly
Answer:
, 
Explanation:
The acceleration of the plane can be determined by means of the kinematic equation that correspond to a Uniformly Accelerated Rectilinear Motion.
(1)
Where
is the final velocity,
is the initial velocity,
is the acceleration and
is the distance traveled.
Equation (1) can be rewritten in terms of ax:
(2)
Since the plane starts from rest, its initial velocity will be zero (
):
Replacing the values given in equation 2, it is gotten:




So, The acceleration of the plane is
Now that the acceleration is known, the next equation can be used to find out the time:
(3)
Rewritten equation (3) in terms of t:



<u>Hence, the plane takes 26.92 seconds to reach its take-off speed.</u>