Answer: hydroelectric power is generated from moving water
Explanation: hydroelectric power is generated from moving water
Answer:
0.09kg of air
Explanation:
The dimensions of the room are given
change the height to meters by dividing it by thousand.
For the volume multiplying the length,width and height (all should be in the same unit most suitable being meters).
Volume refers to the amount of space inside a box or a object.
The amount of air is equal to the volume.
Answer:
Y = V / f where Y equals wavelength
4 Y1 = V / f1 for a closed pipe the wavelength is 1/4 the length of the pipe
2 Y2 = V / f2 for the open pipe the wavelength is 1/2 the length of the pipe
Y1 / Y2 = 2 = f2 / f1 dividing equations
f2 = 2 f1
the new fundamental frequency is 2 * 130.8 = 261.6
(The new wavelength is 1/2 the original wavelength so the frequency must double to produce the same speed.
Answer:
The potential energy at point A is 17.1675 J
Explanation:
The capillary potential is the work expended to bring up a unit mass of liquid to a point in a capillary region from a level liquid surface. It is the capillary potential that facilitates the movement of moisture within soil capillaries
In meteorology it is used to describe the level of saturated soil above the water table
Potential energy is the energy inherent in a body by virtue of its position, therefore the potentials of both point A and B are
Point A, elevation = 75 cm capillary potential = -100 cm
Point B, elevation = 25 cm capillary potential = -200 cm
The total potential energy at point A is
Elevation above reference - capillary potential =75-(-100) = 175 cm
which gives per unit mass
PE = m × g × h = 1 kg × 9.81 m/s ² × 1.75 m = 17.1675 kg·m²/s² = 17.1675 J
The expression of the electric flux is

Here,
Q = Total charge enclosed in the closed surface
= Permittivity due to free space
Rearranging to find the charge,

Replacing with our values we have finally



The charge enclosed by the box is 0.1684nC
The sign of the charge can be decided by using the direction of the flux. The charge enclosed by the cube can be calculated by using the electric flux and the permitivity of free space.