The correct is D.
Explanation: The specific heat is defined as heat required to raise the temperature of a unit mass by one degree. Greater the specific heat, more is the heat required to raise the temperature for equal mass. So, the temperature of the material with lowest specific heat will increase the most for the same amount of heat energy.
This question sounds like it came after some activity where
some forces were observed. Since we were not there, and
we don't know what the activity was, we don't know what forces
were observed, and we have no clue to how they might be related
to the motion of the Earth around the sun.
2.39 Watts roughly since watts is joules per second it’s just 910j/380s
Answer:
gravitational waves are ripples in spece-time caused primarily when objects are accelerated and the energy for the acceleration is transpoted as gravitational radiation.
they are difficult to detect because they require very sensitive technology or you will have to wait unitl black holes collide.
The coefficient of linear expansion, given that the length of the pipe increased by 1.5 cm is 1.67×10¯⁵ /°F
<h3>How to determine the coefficient of linear expansion</h3>
From the question given above, the following data were obtained
- Original diameter (L₁) = 10 m
- Change in length (∆L) = 1.5 cm = 1.5 / 100 = 0.015 m
- Change in temperature (∆T) = 90 °F
- Coefficient of linear expansion (α) =?
The coefficient of linear expansion can be obtained as illustrated below:
α = ∆L / L₁∆T
α = 0.015 / (10 × 90)
α = 0.015 / 900
α = 1.67×10¯⁵ /°F
Thus, we can conclude that the coefficient of linear expansion is 1.67×10¯⁵ /°F
Learn more about coefficient of linear expansion:
brainly.com/question/28293570
#SPJ1