Answer:
Explanation:
Given that:
the initial angular velocity 
angular acceleration
= 4.44 rad/s²
Using the formula:

Making t the subject of the formula:

where;

∴

t = 0.345 s
b)
Using the formula:

here;
= angular displacement
∴



Recall that:
2π rad = 1 revolution
Then;
0.264 rad = (x) revolution

x = 0.042 revolutions
c)
Here; force = 270 N
radius = 1.20 m
The torque = F * r

However;
From the moment of inertia;

given that;
I = 84.4 kg.m²

For re-tardation; 
Using the equation



t = 0.398s
The required time it takes= 0.398s
Answer:
Coefficient of friction will be 0.296
Explanation:
We have given initial speed of the stone u = 8 m /sec
It comes to rest so final speed v = 0 m /sec
Distance traveled before coming to rest s = 11 m
According to third equation of motion

So 

Acceleration due to gravity 
We know that acceleration is given by

So 

So coefficient of friction will be 0.296
Answer:
B) -1m/s^2
Explanation:
Final speed = 0 m/s
Initial speed = 5m/s
Time taken for it to come to rest(0m/s) = 5
then use the formula;
[v = u + at],where v is the final speed..u is the initial speed..t is time taken for it to come to rest and a is the acceleration
; 0 = 5 + 5a
; -5 = 5a
;Acceleration = -1 m/s^2
Answer:
Gravity on the moon, g = 1.69 m/s²
Explanation:
It is given that,
Length of pendulum, l = 1 m
Time period, T = 4.82 seconds
We have to find the gravity of the moon. The time period of the pendulum is given by :

g = acceleration due to gravity on moon


g = 1.69 m/s²
Hence, the gravity on the moon is 1.69 m/s².
Answer:
<h2>230476.19km</h2>
Explanation:
Step one:
given
Force F= 210N
mass m= 1600kg
velocity v=5500m/s
Step two
Required is the radius r
the expression for the force is

substitute
210=1600*5500^2/r
cross multiply we have
210r=48400000000
divide both side by 210
r=230476190.476m
r=230476.19km