Answer:

Explanation:
The electric field produced by a single point charge is given by:

where
k is the Coulomb's constant
q is the charge
r is the distance from the charge
In this problem, we have
E = 1.0 N/C (magnitude of the electric field)
r = 1.0 m (distance from the charge)
Solving the equation for q, we find the charge:

Answer:
The launching point is at a distance D = 962.2m and H = 39.2m
Explanation:
It would have been easier with the drawing. This problem is a projectile launching exercise, as they give us data after the window passes and the wall collides, let's calculate with this data the speeds at the point of contact with the window.
X axis
x = Vox t
t = x / vox
t = 7.1 / 340
t = 2.09 10-2 s
In this same time the height of the window fell
Y = Voy t - ½ g t²
Let's calculate the initial vertical speed, this speed is in the window
Voy = (Y + ½ g t²) / t
Voy = [0.6 + ½ 9.8 (2.09 10⁻²)²] /2.09 10⁻² = 0.579 / 0.0209
Voy = 27.7 m / s
We already have the speed at the point of contact with the window. Now let's calculate the distance (D) and height (H) to the launch point, for this we calculate the time it takes to get from the launch point to the window; at this point the vertical speed is Vy2 = 27.7 m / s
Vy = Voy - gt₂
Vy = 0 -g t₂
t₂ = Vy / g
t₂ = 27.7 / 9.8
t₂ = 2.83 s
This is the time it also takes to travel the horizontal and vertical distance
X = Vox t₂
D = 340 2.83
D = 962.2 m
Y = Voy₂– ½ g t₂²
Y = 0 - ½ g t2
H = Y = - ½ 9.8 2.83 2
H = 39.2 m
The launching point is at a distance D = 962.2m and H = 39.2m
The time when the two players will collide is 0.96 s.
The equation of motion of the two players is given as;
x1 = 0.1 m + (–3.9 m/s )t
x2 = –6.3 m + (2.8 m/s )t
The time when the two players collide, their displacement is equal or the difference in their position will be zero.

Thus, the time when the two players will collide is 0.96 s.
Learn more here: brainly.com/question/18033352
Given constant acceleration, we can get the final position of an object in terms of both its initial velocity and its acceleration using one of the equations of motion.
The equation that we will use is:
Xf = Xi + Vi*t + (1/2)*a*t^2
where:
Xf is the final position of the object
Xi is the initial position of the object
Vi is the initial velocity of the object
t is the time
a is the constant given acceleration
The new period will be 2.486 days.
<h3>What is the period?</h3>
The period is found as the ratio of the angular displacement and the angular velocity. Its unit is the second and is denoted by t. The value of time needed to complete the rotation is the total period.
Given data;
Mass of a star,m= 1.210×10³¹ kg
The time period for one rotation of the star, T = 20.30 days
D' = 0.350 D
R' = 0.350 R
From the law of conservation of angular momentum;

Hence, the new period will be 2.486 days.
To learn more about the period, refer to the link;
brainly.com/question/569003
#SPJ1