Extinct<span> might be a word you associate with animals that lived long ago, like the dinosaurs, but did you know that over 18,000 species are classified as "threatened" (susceptible to extinction) today? Scientists involved in wildlife conservation have a tough job; they are in charge of determining what needs to be done to prevent a species from becoming extinct. Habitat, food supply, and impacts of local human populations are just a few of the factors these scientists take into account. It is a lot to keep track of for a single location, but the job becomes even harder when it is a migratory animal. In this science project, you will get a firsthand look at their job. You will access </span>real<span> data about migratory birds and use satellite images to analyze their habitats, then come up with a conservation plan to protect the species from extinction.</span>
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.
Answer:
4.6 m
Explanation:
First of all, we can find the frequency of the wave in the string with the formula:

where we have
L = 2.00 m is the length of the string
T = 160.00 N is the tension
is the mass linear density
Solving the equation,

The frequency of the wave in the string is transmitted into the tube, which oscillates resonating at same frequency.
The n=1 mode (fundamental frequency) of an open-open tube is given by

where
v = 343 m/s is the speed of sound
Using f = 37.3 Hz and re-arranging the equation, we find L, the length of the tube:

Answer:
50 J
Explanation:
The net force acting on the box is given by the algebraic sum of the two forces, so:

The net work done on the box is equal to (assuming the net force is parallel to the displacement of the object)

where
F = 5 N is the net force on the object
d = 10 m is the displacement of the object
Substituting,
