Answer: Ms. Scarlet is the murderer.
Explanation: Each color has a wavelength band, some visible to the human eye (visible spectrum), some for the other animals. In this game of "Clue", the color are yellow (Col. Mustard), violet (Prof. Plum), green (Mr. Green), blue (Ms. Peacock) and red (Ms. Scarlet). Using the device and knowing each band, it's determined that at the time of murder, Mr. Green was in the dining room, because green light has the wavelength between 495 to 570nm; Prof. Plum was in the library, due to violet's light has the shortest wavelength; Col. Mustard and Ms. Peacock were either in the lounge or in the study, because of their color's light wavelength measurement. So, the person responsible for the murderer was Ms. Scarlet, as the other devices in the other places didn't register a higher wavelength, which is compatible to the red light.
Answer:
what?
Explanation:NAAAAAAAAAANNNIIIIIIIIIIIIIIIII
Answer: gas vibrate and move freely at high speeds. liquid vibrate, move about, and slide past each other. solid vibrate but generally do not move from place to place.
Explanation: brainlyest please my other account got banned i was an expert
First calculate the Ar of the compound.. ( Ar of C6H12O6 is 180)
Then divide the At of the required element by 180 and multiply by 100...
so, for carbon 12 * 6 = 72 (THERE ARE 6 CARBON ATOM)
(72/180) * 100 =40%
ITS THE SAME FOR THE OTHER 2 ELEMENT
1. First, you have to find the number of moles 1.6z10^5L of gas is at 373K and 0.967atm using PV=nRT solving for n. (n=PV/RT). Everything is in the correct units and we know R is going to be 0.08206atmL/molK since it is a constant.
n=(0.967atmx160000L)/(0.08206atmL/molKx373K)
n=5054.8mol gas
Then you have to find the the number grams which can be found using the molar mass given as 29g/mol. multiply 29g/mol by the number of moles of gas we found in the previous step.
5054.8molx29g/mol=146589.9g of gas
Lastly, to find the density of the gas you need to divide the mass of the gas by its volume.
146589.9g/160000L=0.916g/L
2. The dinsity of the gas at STP should be higher than the density of gas with the given conditions. This is due to the fact that the given conditions involves a higher temperature than that of at STP which will cause the gas to expand therefore increasing the volume with out increasing the mass. The reason why the pressure is not building up even though the pressure is higher is that the balloon is not sealed meaning the gas can maintain about atmospheric pressure while expanding since the excess are just leaves the balloon.
the answer to part 2 can be proven by the fallowing:
To find the density of the gas at STP you first multiply the molar volume of gas at STP by the number of moles of gas from part 1 to get the volume of the gas at STP.
5054.8molx22.4L/mol=113228L
Then you divide the mass form part by the new volume to get the new density.
<span>146589.9g/113228L=1.30g/L</span>
I hope this helps. Let me know in the comments if any of it is unclear.