It can be a compound or a single element. An element is a pure substance that cannot be separated into simpler substances by chemical or physical means. There are about 117 elements, butcarbon, hydrogen, nitrogen and oxygen are only a few that make up the largest portion of Earth.
I would say d.
Answer:
Ⓓ The process follows the law of conservation of mass and energy is found in the product
Explanation:
This question depicts PHOTOSYNTHESIS, which is the process employed by green plants to manufacture their food in form of sugars (glucose). The general equation, which was given in the question is as follows:
6CO2 + 6H2O + energy → C6H12O6 + 6O2
This chemical reaction follows the LAW OF CONSERVATION OF MASS, which states that the amount of matter in reactant must equate that of the product. In this case, each element contains the same number of atoms in both reactant side and product side.
Also, energy is contained in the product but stored in the chemical bonds of the glucose molecule formed.
Answer:
the density of the sample - the melting point of the sample
Explanation:
Intrinsic property is the property of matter which exists itself or within subject. In other words, it do not depend on the mass of the sample. An extrinsic property is not inherent or essential to subject which is being characterized. In other words, it depend on the mass of the sample.
For example,
Density, melting point are example of intrinsic property. Whereas, weight, volume are an example of extrinsic property.
Intrinsic properties helps to determine the matter. Thus, density of sample and melting point of sample is the answer.
Answer:
A) 3.17 g of Zn
Explanation:
Let's consider the reduction of Zn(II) that occurs in an electrolysis bath.
Zn⁺²(aq) + 2e⁻ → Zn(s)
We can establish the following relations:
- 1 min = 60 s
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant).
- When 2 moles of electrons circulate, 1 mole of Zn is deposited.
- The molar mass of Zn is 65.38 g/mol
The mass of Zn deposited under these conditions is:

Answer:
Yes.
Explanation:
Hydrogen-filled balloons were widely used by the militaries during World War I (1914–1918). The main purpose of these hydrogen-filled balloons to detect movements of enemy troops and to provide direction to the artillery fire. Balloons were the targets of opposing aircraft because they knew the purpose of these balloons so they hit it whenever seen by the enemies so we can say that both sides used hydrogen-filled balloons as military observer to watch the enemy's movements.