0.022 has 2 digits because you would count from the left starting with the first nonzero number
The wavelength of the infrared radiation is λ =
×
m.
<h3>What is infrared radiation?</h3>
An infrared telescope is tuned to detect infrared radiation with a frequency of 9.45 THz.
We know that,
1 THz = 10¹² Hz
So,
f = 9.45 × 10¹² Hz
We need to find the wavelength of the infrared radiation.
λ=c/f
λ = 3×
/9.45×
λ = 3.174 ×
m
The term "infrared radiation" (IR) refers to a part of the electromagnetic radiation spectrum with wavelengths between about 700 nanometers (nm) and one millimeter (mm). Longer than visible light waves but shorter than radio waves are infrared waves.
Electromagnetic radiation with wavelengths longer than those of visible light is known as infrared, also known as infrared light. Since it is undetectable to the human eye, The typical range of wavelengths considered to be infrared (IR) is from about 1 millimeter to the nominal red edge of the visible spectrum, or about 700 nanometers.
To learn more about infrared radiation from the given link:
brainly.com/question/13163856
#SPJ4
Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.
It is given that for the convex lens,
Case 1.
u=−40cm
f=+15cm
Using lens formula
v
1
−
u
1
=
f
1
v
1
−
40
1
=
15
1
v
1
=
15
1
−
40
1
v=+24.3cm
The image in formed in this case at a distance of 24.3cm in left of lens.
Case 2.
A point source is placed in between the lens and the mirror at a distance of 40 cm from the lens i.e. the source is placed at the focus of mirror, then the rays after reflection becomes parallel for the lens such that
u=∞
f=15cm
Now, using mirror’s formula
v
1
+
u
1
=
f
1
v
1
+
∞
1
=
15
1
v=+15cm
The image is formed at a distance of 15cm in left of mirror
The answer will be
(1) correct
(2) correct
(3) the force of the soccer ball on the net
(4) Will not change
Hope this help