The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474
Answer:
the second one i guess????
Explanation:
Answer:
Explanation:
mass of probe m = 474 Kg
initial speed u = 275 m /s
force acting on it F = 5.6 x 10⁻² N
displacement s = 2.42 x 10⁹ m
A )
initial kinetic energy = 1/2 m u² , m is mass of probe.
= .5 x 474 x 275²
= 17923125 J
B )
work done by engine
= force x displacement
= 5.6 x 10⁻² x 2.42 x 10⁹
= 13.55 x 10⁷ J
C ) Final kinetic energy
= Initial K E + work done by force on it
= 17923125 +13.55 x 10⁷
= 1.79 x 10⁷ + 13.55 x 10⁷
= 15.34 x 10⁷ J
D ) If v be its velocity
1/2 m v² = 15.34 x 10⁷
1/2 x 474 x v² = 15.34 x 10⁷
v² = 64.72 x 10⁴
v = 8.04 x 10² m /s
= 804 m /s
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Answer:
Solar and nuclear power generate more than 99 percent of our civilization's energy. Every other important source of energy is a combination of these two. The majority of them are solar in nature. We discharge previously collected solar energy when we burn wood.
and
Nuclear energy, fossil energy (oil, coal, and natural gas), and renewable energy (wind, solar, geothermal, and hydropower) are all examples of primary energy sources.
Explanation: