Answer:
Velocity.
Explanation:
Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.
As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:
Horizontal range: As per expression:
R= (
*sin2θ)/g
the range depending on the square of the initial velocity.
Maximum height: As per expression:
H= (
*
θ
)/2g
the maximum distance also depends upon square of the initial velocity.
Answer:
Long wavelength
Explanation:
Wavelengths that corresponds to the bands of blue and red are strongly absorbed whereas the wavelengths that lie in the mid-range corresponds to green light that are absorbed weakly.
Fluorescence produced is always directed towards longer wavelengths of the spectra as compared to the corresponding spectra for absorption.
As per the question, the velocity of the airplane [v] = 660 miles per hour.
The total time taken by airplane [t] = 3.5 hours.
We are asked to determine the total distance travelled by the airplane during that period.
The distance covered [ S] by a body is the product of velocity with the time.
Mathematically distance covered = velocity × total time
S = v × t
= 660 miles/hour ×3.5 hours
= 2310 miles.
Hence, the total distance travelled by the airplane in 3.5 hour is 2310 miles.
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
Answer:
a

b

Explanation:
From the question we are told that
Their distance apart is 
The wavelength of each source wave 
Let the distance from source A where the construct interference occurred be z
Generally the path difference for constructive interference is

Now given that we are considering just the straight line (i.e points along the line connecting the two sources ) then the order of the maxima m = 0
so

=> 
=> 
Generally the path difference for destructive interference is

=> 
=> 
substituting values

=> 
So


and

=> 
=> 