Protons/Electrons: 92
Neutrons: 140
***REMEMBER: There is always the same amount of protons and electrons. :)
Really I appreciate you letting you guys sleep you good though I love it all I gotta see you soon buddy I’m
Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb
Answer:
Answer is given below.
Explanation:
Anode is that electrode where oxidation occurs. Cathode is that electrode where reduction occurs.
In cell representation, half cell present left to salt-bridge notation
is anodic system and another half cell present right to salt-bridge notation
is cathodic system.
So anode is Cu and cathode is Ag.
oxidation: 
[reduction:
]
-----------------------------------------------------------------------------------------------
chemical equation: 
Oxidizing agent is that species which takes electron from another species. Here
takes electron from Cu. Hence
is the oxidizing agent.
Reducing agent is that species which gives electron to another species. Here Cu gives electron to
. Hence Cu is the reducing agent.
Answer: option B. closer to oxygen in the case of CO2
Explanation: