Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume

Put the value into the formula


We need to calculate the maximum power density in the reactor
Using formula of power density

Where, P = power density
E = energy
V = volume
Put the value into the formula


Hence, The maximum power density in the reactor is 37.562 KW/L.
Answer:
Pls give the equation and for what is that equation for?
Answer:
A) 1.5 v
B) Top plate is at higher voltage than the bottom plate
Explanation:
Battery value set between 0.0 V and 1.5 V
a) The potential difference between the plates
Δ V = V1( potential at top plate) - V2( potential at lower plate )
potential at top plate = 1.5 V
potential at lower plate = 0.0 V
hence potential difference = 1.5 V
b ) The top plate is always connected to the positive terminal of the DC source ( which is at a higher potential )while the bottom plate is connected to the negative terminal of the DC source ( which is at a lower potential )
hence the Top plate is at higher voltage than the bottom plate
-- The resistance of the heater is (volts/current) = 5 ohms
-- The heating (RMS) value of a sinusoidal AC is V(peak)/√2 . For this particular alternator, V(peak)=100V, so the heating (RMS) equivalent is 70.71 V.
-- The heating power delivered to the electric heater is (E²/R).
Power = (100/√2)² / 5
Power = 5,000 / 5
<u>Power = 1,000 watts </u>
Answer:
the extension would be less the new extension might be 3 cm
Explanation: