Answer:
Yes, they will also have the same acceleration. Acceleration is controlled by the amount of weight (def. amount of gravitational pull on a given object) that the ball has. For one ball to accelerate quicker than the other, it would need a propulsion element, which it does not.
Explanation:
Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

Answer:
Q = C M T where C is the specific, M the mass, T the temperature change
Note 1 cal = 4.19 Joules
1562.75 J / (4.19 J/cal) = 378 cal
C = Q / (M * T) = 378 cal / (25.35 g * 155 deg C)
C = .096 cal / g deg C
Answer:
v = -0.45 m/s
Explanation:
Assuming the canoe was initially at rest with momentum L = 0
and that the dog's velocity is in the positive direction
conservation of momentum
0 = 15(1.2) + 40v
v = -0.45 m/s