Answer:
0.52 Nm
Explanation:
A = 0.12 m^2, N = 200, i = 0.5 A, B = 0.050 T
Angle between the plane of loop and magnetic field = 30 Degree
Angle between the normal of loop and the magnetic field = 90 - 30 = 60 degree
θ = 60°
Torque = N i A B Sinθ
Torque = 200 x 0.5 x 0.12 x 0.050 x Sin 60
Torque = 0.52 Nm
Answer:
The speed of the ball was, v = 3 m/s
Explanation:
Given data,
The time period of the ball, t = 8 s
The distance the ball rolled, d = 24 m
The velocity of an object is defined as the object's displacement to the time taken. The formula for the velocity is,
v = d / t m/s
Substituting the given values in the above equation,
v = 24 / 8
= 3 m/s
Hence, the speed of the ball was, v = 3 m/s
Answer:
Since the area of the perfect square is 11650, and all of a squares sides ar equal, we just need to find the square root.
The square root of 11650 is 107.935166.
One side of the square is 107.935166
107.935166 x 107.935166 = 11650
(っ◔◡◔)っ ♥ Hope It Helps ♥
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
Answer:
W = 1250 J = 1.25 KJ
Explanation:
The work done by the boy is due to the change in the position of the cement vertically. Hence, the work done in this case will be equal to the potential energy of the cement:

where,
W = Work done = ?
mg = W = weight of cement = 500 N
h = height covered = 2.5 m
Therefore,

<u>W = 1250 J = 1.25 KJ</u>