Answer:
3000 kJ/kg
Explanation:
The calorific value of a substance is the amount of heat produced per unit mass by the combustion of the substance.
It is given by:

where
Q is the amount of heat released
m is the mass of the fuel
In this problem, we have:
m = 60 kg is the mass of fuel
is the amount of heat released
Therefore, the calorific value of the fuel is:

Heat capacity of aluminium = 0.900 J/g°C
While heat capacity of water = 4.186 J/g°C
Heat = heat gained by water + heat gained by aluminium
Heat gained by water = 100 × 4.186 × 30.5
= 12767.3 Joules
Heat gained by aluminium = 15 × 0.9 × 30.5
= 411.75 Joules
Heat required = 13179.05 Joules or 13.179 kJoules
Answer:
No
Explanation:
No, but the total mass of reactants must equal the total mass of products to be a balanced equation.
Example: Consider the following reaction ...
3H₂ + N₂ => 2NH₃ and 'amu' is atomic mass units (formula weights from periodic table)
In terms of molecules, there are 4 molecules on the left (3 molecular hydrogens (H₂) and 1 molecular nitrogen (N₂) and 2 molecules of ammonia on the right side of equation arrow. ∑reactant molecules ≠ ∑product molecules.
In terms of mass of reactants & mass of products, the 3H₂ + N₂ => 6amu + 28amu = 34amu & mass of products (2NH₃) => 2(14amu) + 6(1amu) = 34amu for sum of product masses.
∑mass reactants = ∑mass products <=> 34amu = 34amu.
The expression '∑mass reactants = ∑mass products' as applied to chemical equations is generally known as 'The Law of Mass Balance'.
Answer:
doublet
Explanation:
Proton MNR is used for the determination of no. of equivalents protons in a molecule
In the molecule, single NMR signal is produced for each set of protons.
Signal splitting is called spin-spin coupling and the splitting of signals depends upon the no. of neighboring proton.
The no. of signal for a proton is equal to n+1, where n is neighboring protons.
In 1-bromo-2-methylpropane, neighboring proton for both methyl protons are one. But the chemical environment of both the methyl protons are different.
Neighboring proton for methyl protons = 1
No. of signal for methyl protons = 1+1 =2
Hence, two doublets will be generated for each set of methyl protons. protons.
Answer:
The molar mass of NaOH is 40.00 g/mol.
The number of moles of NaOH is equal to the ratio of its mass to molar mass.
The number of moles of NaOH =
40 g/mol
40 g
=1,000 mol
The molarity of NaOH solution is the ratio of number of moles of NaOH to total volume of solution in L.
M=
1 L
1 mol
=1 M
Explanation ;)