Answer:
The concentration of helium in the water is 2.405×10^-4 M
Explanation:
Concentration = Henry's law constant × partial pressure of helium
Henry's law constant = 3.7×10^-4 M/atm
Partial pressure of helium = 0.65 atm
Concentration = 3.7×10^-4 × 0.65 = 2.405×10^-4 M
Answer:
6.50 g of Hydrogen
Explanation:
We know that in every 20.0g of sucrose, there are 1.30g of hydrogen.
We now have 100.0g of sucrose. 100.0g is 5x larger than the 20.0g sample, which is a 5 : 1 ratio. Applying this ratio to the amount of hydrogen, we would have 5*1.3g of hydrogen in the 100.0g of sucrose.
5*1.3 = 6.5, so our answer is that there are 6.50g of hydrogen in 100.0g of sucrose.
Hope this helps!
Answer:
The wavelength for the transition from n = 4 to n = 2 is<u> 486nm</u> and the name name given to the spectroscopic series belongs to <u>The Balmer series.</u>
Explanation
lets calculate -
Rydberg equation- 
where ,
is wavelength , R is Rydberg constant (
),
and
are the quantum numbers of the energy levels. (where
)
Now putting the given values in the equation,


Wavelength 
=
= 486nm
<u> Therefore , the wavelength is 486nm and it belongs to The Balmer series.</u>
Answer: <em>Acceleration of the ball in the given system is 5 meter per Second Square</em>
<em>The laws of motion are used to determine various aspects of an object in motion</em>.
Explanation:
Applying the first law of motion to calculate acceleration; if formula used in first law is given as 
Here we have a final velocity as 40 meter per second and initial velocity as 20 meter per second and time span is given as 2 second applying the given values in the given equation and finding the value of a