No. I do not agree with Stefan. Quite the contrary. I disagree
with his description of "<span>angle of incidence" as the angle between
the surface of the mirror and the incoming ray.
The correct description of "angle of incidence" is </span><span>the angle between
the NORMAL TO the surface of the mirror and the incoming ray.
Thus, the true angle of incidence is the complement of the angle that
Stefan calculates or measures.</span>
Answer:
V = 0.39 m/s
Explanation:
Given that,
Mass of hockey puck, m = 0.2 kg
Mass of goalie = 40 kg
Speed of hockey puck, v = 80 m/s
We need to find the speed with which the goalie slide on the slide. Let V be the speed. Using the conservation of momentum as follows :

So, the required speed is 0.39 m/s.
To solve this you must set up what is called a proportion. A proportion is a way of comparing two comparing values where one of the four values is missing. In your problem the missing value is the height of the smallest tree in the model.
To set up a proportion, you need all of your values. The easiest way to do this is to list them:
Highest tree in real life: 40ft
Highest tree in model: 10ft
Smallest tree in real life: 4ft
Smallest tree in model: x
So know you can set your proportion like this:
40/4 = 4/x
(When setting up a proportion, you always want to have the values belong to each other. For example don't put the height of the small tree in the model underneath the value of the highest tree in real life.)
So know to find what the x values equals, we need to cross multiply. And then all that's left after that is to solve for x.
40 times x = 4 times 4
40x = 16
x = 2.5
The smallest tree in the model should equal 2.5 feet.
Hope this helps! :)
The velocity of pin B after rod AB has rotated through 90* is vb = 3.2549 m/s.
<h3>What is Potential and Kinetic energy?</h3>
Potential energy is the energy that is stored in any item or system as a result of its location or component arrangement. The environment outside of the object or system, such as air or height, has no impact on it. In contrast, kinetic energy refers to the energy of moving particles inside a system or an item.
mass of rod, mab = 2.4kg
mass of rod, mbc = 4kg
conservation of energy


potential energy at position 1,

V1 = 2.5 * 9.81 * 0.18 + 4 * 9.81 * 0.18
V1 = 11.30112
kinetic energy T1 at position 1 is zero
potential energy at position 2 is zero
K.E at position 2,


= 1/3 *4 * (0.36)²
=0.10368kg m²

= 1/12 *4 * (0.6)²
=0.12kg m²
on putting the values in above equation we get,
T₂ = 1.0667vb²
0 + 11.30112 = 1.0667vb² + 0
vb = 3.2549 m/s
to learn more about Kinetic and potential energy go to - brainly.com/question/18963960
#SPJ4