Answer:
p = 4000 kg-m/s
Explanation:
Given that,
The mass of a truck, m = 200 kg
Speed of the truck, v = 20 m/s
We need to find the momentum of the truck. The formula for momentum is given by :
p = mv
so,
So, the momentum of the truck is equal to 4000 kg-m/s.
Answer:
B
Explanation:
Depends Mostly on bonds electrolysis can be used, chemical bonding like additional of water or by heating back to their elements.
Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
Answer:
dissociation of acetic acid (like vinegar) in water
Explanation:
CH3COOH is basically vinegar (aka acetic acid)
dissociation of acetic acid in water
so when you put vinegar in water it makes 2 hydrogen ions (H+) and acetate ( CH3C00 ) a chemical that used in making film
Answer:
The shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm
Explanation:
Given;
wavelength of ultraviolet light, λ = 270 nm
work function of the metal, φ = 2.3 eV = 2.3 x 1.602 x 10⁻¹⁹ J = 3.685 x 10⁻¹⁹ J
The energy of the ultraviolet light is given by;
The energy of the incident light is related to kinetic energy of the electron and work function of the metal by the following equation;
E = φ + K.E
K.E = E - φ
K.E = (7.362 x 10⁻¹⁹ J) - (3.685 x 10⁻¹⁹ J )
K.E = 3.677 x 10⁻¹⁹ J
K.E = ¹/₂mv²
mv² = 2K.E
velocity of the electron is given by;
the shortest de Broglie wavelength for the electrons is given by;
Therefore, the shortest de Broglie wavelength for the electrons that are produced as photoelectrons is 0.81 nm