Answer:
B
Explanation:
in a liquid the particles are widespread and move around each other but in a solid they move in place and are tightly packed
A red apple absorbs all colors of visible light except red, so red light
is the only light left to bounce off of the apple toward our eyes.
(This is a big part of the reason that we call it a "red" apple.)
Here's how the various items on the list make out when they hit the apple:
<span>Red . . . . . reflected
Orange . . absorbed
Yellow . . . </span><span><span>absorbed
</span>Green . </span><span><span>. . absorbed
</span>Blue . . </span><span><span>. . absorbed
</span>Violet .</span><span> . . absorbed</span>
<span>Black . . . no light; not a color
White . . . has all colors in it</span>
Answer: The answer is D
Explanation: i had the same question and i just guessed and got it first try
Answer:
A proposed answer to a s scientific problem is a hypothesis.
No, because superconductivity cannot occur if there is resistance
In addition to explaining electrical resistance, equilibrium distance theory also foretells the existence of superconductivity. According to its postulates, electrical resistivity decreases with distance from the equilibrium. There is only superconductivity at zero distance, with no resistance
<h3>What is Superconductivity ?</h3>
The ability of some materials to transmit electric current with virtually little resistance is known as superconductivity.
- This ability has intriguing and maybe beneficial ramifications. Low temperatures are necessary for a material to exhibit superconductor behaviour. H. K. made the initial discovery of superconductivity in 1911.
- Aluminum, magnesium diboride, niobium, copper oxide, yttrium barium, and iron pnictides are a few well-known examples of superconductors.
Learn more about Superconductivity here:
brainly.com/question/17166152
#SPJ4