The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
It is 92.96 millions miles away
Hope that helped :)
Explanation :
It is given that,
Mass of the car, m = 1000 kg
Force applied by the motor, 
The static and dynamic friction coefficient is, 
Let a is the acceleration of the car. Since, the car is in motion, the coefficient of sliding friction can be used. At equilibrium,




So, the acceleration of the car is
. Hence, this is the required solution.
<span>In chemistry and physics, the atomic theory explains how our understanding of the atom has changed over time. Atoms were once thought to be the smallest pieces of matter. The first idea of the atom came from the Greek philosopher Democritus. Hope I helped!!</span>
About 13.7 billion years ago
The Big Bang Theory states that the universe started about 13.7 billion years ago, and before that, everything was in 1 singularity.