<span>the si unit of temperature is its degree celsius because its online you could've just looked it up </span>
A pure element unbound or in a diatomic state, such as cl2, always has an oxidation number of 0 (zero).
<h3>Why does pure element or a diatomic molecule has zero oxidation state?</h3>
In a neutral substance with atoms of only one element, the oxidation number of an atom is zero. As a result, the oxidation number of the atoms in O2, O3, P4, S8, and aluminum metal is 0. The oxidation numbers for an element in its normal state will be zero. O2 and Cl2 are diatomic gas molecules that occur naturally, thus when they are in that state, they have an oxidation state of zero. Metals like zinc will also have an oxidation number of zero if they are in their natural solid state.
O2 and Cl2 are neutral diatomic, hence they will always have a zero oxidation state. It is impossible for one oxygen atom to have a negative 2 charge while the other has a positive 2. The oxidation states should be 0 if the elements are solids, liquids, or any type of diatomic molecule.
Learn more about oxidation state here:
brainly.com/question/6707068
#SPJ4
Answer:
![[H_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D0.183M)
![[I_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.183M)
![[HI]_{eq}=0.025M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.025M)
Explanation:
Hello.
In this case, for this equilibrium problem, we first realize that at the beginning there is just HI, it means that the reaction should be rewritten as follows:

Whereas the law of mass action (equilibrium expression) is:
![Kc=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
That in terms of initial concentrations and reaction extent or change
turns out:
![Kc=\frac{x*x}{([HI]_0-2x)^2}\\\\54.3=\frac{x^2}{(0.391M-2x)^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7Bx%2Ax%7D%7B%28%5BHI%5D_0-2x%29%5E2%7D%5C%5C%5C%5C54.3%3D%5Cfrac%7Bx%5E2%7D%7B%280.391M-2x%29%5E2%7D)
And the solution via solver or quadratic equation is:

Whereas the correct answer is 0.183 M since the other value yield a negative concentration of HI at equilibrium (0.391-2*0.210=-0.029M).This, the equilibrium concentrations are:
![[H_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D0.183M)
![[I_2]_{eq}=0.183M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.183M)
![[HI]_{eq}=0.391M-2*0.183M=0.025M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.391M-2%2A0.183M%3D0.025M)
Regards.
Answer:
D: Electromagnetic
Explanation:
Chemical energy is the energy in chemical bonds which is a type of potential energy, eliminating both B and C. While kinetic energy is the energy of motion, photons are a wave/ particle so thinking it would have kinetic energy wouldn't be your fault but light is on the electromagnetic spectrum making D the most likely answer.
Answer:
5118.50 J
Explanation:
pΔv=nRΔT ;
therefore, ΔT=PV/nR
ΔT = (6.4×10^5)(3.2×10^(-3)/1×8.314
ΔT= 2.4633×10^2 = 246.33 K
specific heat at constant pressure is given as:
c_p = 3/2R
c_p = 12.5 J/mol K
Now, substitute in equation (1)
we know that
Q=ΔU+W ;
and
W=pΔV= 6.4×10^5×3.2×10^(-3) = 2048 J
now
ΔU=CvΔT = 12.465×246.33 =3070.50 J ;
therefore
Q=3070.50+2048= 5118.50 J