Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
Answer:
Temperature
Explanation:
The heat flows from high temperature to low temperature.So we can say that temperature is the property that decide the direction of heat flow.Like in the electric system current flow high voltage to low voltage ,so we can say that voltage is the property which determine the direction of current flow.
So the answer is Temperature.
Answer:
the minimum thickness the soap film can be if it is surrounded by air is 85.74 nm
Explanation:
Given the data in the question;
wavelength of light; λ = 463 nm = 463 × 10⁻⁹ m
Index of refraction; n = 1.35
Now, the thinnest thickness of the soap film can be determined from the following expression;
= ( λ / 4n )
so we simply substitute in our given values;
= ( 463 × 10⁻⁹ m ) / 4(1.35)
= ( 463 × 10⁻⁹ m ) / 5.4
= ( 463 × 10⁻⁹ m ) / 4(1.35)
= 8.574 × 10⁻⁸ m
= 85.74 × 10⁻⁹ m
= 85.74 nm
Therefore, the minimum thickness the soap film can be if it is surrounded by air is 85.74 nm
(500 m) / (580 m/s) = 0.862 second
(8,750 m) / (580 m/s) = 15.09 seconds