A window is the most transparent object from these, so that is the answer.
There are correlation and causation between the force of the finger and the movement of the books
If the rod is in rotational equilibrium, then the net torques acting on it is zero:
∑ τ = 0
Let's give the system a counterclockwise orientation, so that forces that would cause the rod to rotate counterclockwise act in the positive direction. Compute the magnitudes of each torque:
• at the left end,
τ = + (50 N) (2.0 m) = 100 N•m
• at the right end,
τ = - (200 N) (5.0 m) = - 1000 N•m
• at a point a distance d to the right of the pivot point,
τ = + (300 N) d
Then
∑ τ = 100 N•m - 1000 N•m + (300 N) d = 0
⇒ (300 N) d = 1100 N•m
⇒ d ≈ 3.7 m
Your question has been heard loud and clear.
Well it depends on the magnitude of charges. Generally , when both positive charges have the same magnitude , their equilibrium point is towards the centre joining the two charges. But if magnitude of one positive charge is higher than the other , then the equilibrium point will be towards the charge having lesser magnitude.
Now , a negative charge is placed in between the two positive charges. So , if both positive charges have same magnitude , they both pull the negative charge towards each other with an equal force. Thus the equilibrium point will be where the negative charge is placed because , both forces are equal , and opposite , so they cancel out each other at the point where the negative charge is placed. However if they are of different magnitudes , then the equilibrium point will be shifted towards the positive charge having less magnitude.
Thank you
Answer:
Part of the question is missing but here is the equation for the function;
Consider the equation v = (1/3)zxt2. The dimensions of the variables v, x, and t are [L/T], [L], and [T] respectively.
Answer = The dimension for z = 1/T3 i.e 1/ T - raised to power 3
Explanation:
What is applied is the principle of dimensional homogenuity
From the equation V = (1/3)zxt2.
- V has a dimension of [L/T]
- t has a dimension of [T]
- from the equation, make z the subject of the relation
- z = v/xt2 where 1/3 is treated as a constant
- Substituting into the equation for z
- z = L/T / L x T2
- the dimension for z = 1/T3 i.e 1/ T - raised to power 3