1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
8

If the Sun subtends a solid angle Ω on the sky, and the flux from the Sun just above the Earth’s atmosphere, integrated over all

wavelengths, is f(d¯), show that the flux at the Solar photosphere is πf(d¯)/Ω. b. The angular diameter of the Sun is 0.57 degree. Calculate the solid angle subtended by the Sun, in steradians. Answer: Ω = 7.8 × 10−5 . c. The Solar flux at Earth is f(d¯) = 1.4 × 106 erg s−1 cm−2 = 1.4 kW m−2 . Use (b), and the Stefan-Boltzmann Law, to derive the effective surface temperature of the Sun. Answer: TE = 5800 K. d. Derive an expression for the surface temperature of the Sun, in terms only of its solid angle, its flux per unit wavelength fλ(λ1) at Earth at one wavelength λ1, and fundamental constants.
Physics
1 answer:
Arada [10]3 years ago
7 0

Answer:

A)Ω = 7.8 × 10^−5 steradians.

B) TE = 5800K

C) fλ(λ1) = (π ^2 ) /ΩBλ(T)

Explanation:

A) First of all, if we assume that the Sun emits isotropically at a luminosity (L⊙) , the flux at a given distance R from the sun would be f(d) = L⊙/ (4πd^2)

The ratio of flux at the solar photosphere to the flux at the Earth’s atmosphere would be: F⊙/{f(d⊙)} = (R⊙)^2 / (d⊙)^2

Now if we think of this relationship of the flux and the earth as a conical pattern, we'll deduce that the solid angle subtended by the sun at Earth’s surface to be;

Ω = π[(R⊙)^2 / (d⊙)^2]

Combining this with the ratio earlier gotten, well arrive at;

F⊙ = {f(d⊙ )π} /Ω

Now let's express The radius of the sun (R) in terms of its angular diameter (2α) and this gives;

R⊙ ≈ αd⊙

Now combining this with the equation for Ω earlier, we get;

Ω ≈ πα^2

So, = π((0.57/2π) /180)^2 = 7.8 × 10^−5 steradians.

B) from Stefan-Boltzmann Law,

F⊙ = σ(TE)^4

From the beginning, we know that;

F⊙ = {f(d⊙ )π} /Ω

And so replacing that in the stephan boltzmann law, we get ;

{f(d⊙ )π} /Ωσ = (TE)^4

So, (TE)^4 = {π (1.4 kWm^(−2))} / [(7.8 × 10^(−5 ) steradians x (5.66961 × 10^(−8))]

In stephan boltzmann law, σ = 5.66961 × 10^(−8)

And so, TE is approximately 5800K.

C) In order to relate fλ(λ1) with T, let's assume the sun’s surface to be an isotropically emitting blackbody, i.e its specific intensity is Iλ = Bλ(T). Hence, the flux at Sun’s surface for a given wavelength would be;

Fλ(λ1) = πBλ(T)

Now, if we combine this with the expression of F⊙ gotten earlier, well get the relation;

fλ(λ1) = (π ^2 ) /ΩBλ(T)

You might be interested in
Is james west still alive?
mafiozo [28]
Greetings


and james west is ALIVE

8 0
3 years ago
Read 2 more answers
Which statement about the image Formed by a plane mirror is correct?
lbvjy [14]

Answer:

The image is virtual

number-4

8 0
3 years ago
Examine the scenario.
vovangra [49]

Answer:

acceleration 8 km/h/s south

Explanation:

First of all, let's remind that a vector quantity is a quantity which has both a magnitude and a direction.

Based on this definition, we can already rule out the following two choices:

distance: 40 km

speed: 40 km/h

Since they only have magnitude, they are not vectors.

Then, the following option:

velocity: 5 km/h north

is wrong, because the car is moving south, not north.

So, the correct choice is

acceleration 8 km/h/s south

In fact, the acceleration can be calculated as

a=\frac{v-u}{t}

where

v = 40 km/h is the final velocity

u = 0 is the initial velocity

t = 5 s is the time

Substituting,

a=\frac{40 km/h-0}{5 s}=8 km/h/s

And since the sign is positive, the direction is the same as the velocity (south).

7 0
3 years ago
Can you plz help me in on 11 12 and 14?
anygoal [31]
I’m pretty sure 14 is mutations
3 0
3 years ago
What is the transition from a gas to a liquid?
postnew [5]
The transition from gas to liquid is called condensation. An example would be water droplets forming on an ice cold glass placed in room temperature.
6 0
3 years ago
Other questions:
  • A pair of toy freight cars, one twice the mass of the other, fly apart when a compressed spring that joins them is released. Acc
    15·1 answer
  • A cannonball is launched with initial velocity of magnitude v0 over a horizontal surface. At what minimum angle
    6·1 answer
  • 9
    6·1 answer
  • The radioactive isotope U-238 has protons and neutrons.
    7·2 answers
  • Two cars of the same mass have different velocities. Which car has more momentum?
    7·1 answer
  • Q1) An action exerted on an object which may change the object's
    8·1 answer
  • It took 3 seconds for an object that was thrown up with velocity vo from
    6·1 answer
  • Gus likes to create pictures or clusters to show the information he has learned. What kind of learner is Gus likely to be?
    9·2 answers
  • What is the impact of roller coaster on human's body
    11·1 answer
  • A ball is thrown straight upward at 10 m/s. Ideally (no air resistance), the ball will return to the thrower's hand with a speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!