Answer:
Xe will have the highest partial pressure
Explanation:
Using Dalton's law of partial pressures for ideal gases
p=P*x
where
p= partial pressure , P= total pressure and x = mole fraction = n / ∑n
since the number of moles is related with mass through
n= m/M
where
m= mass and M= molecular weight
then if m is the same for all the gases
x = m*M/ ∑ (m*M) = m*M/ m∑ M = M/∑ M
thus
p=P*x = P*M/ ∑ M
for the 3 gases
p₁=P*x₁ = P*M₁/ (M₁+M₂+M₃)
p₂=P*x₃ = P*M₂/ (M₁+M₂+M₃)
p₂=P*x₃ = P*M₃/ (M₁+M₂+M₃)
then for gasses under the same pressure (P=constant) and same mass (m=constant) , p is higher when the molecular weight is higher . Therefore Xe will have the highest partial pressure
Answer:
The solutions of hydrobromic acid and of chloric acid are the most electrically conductive.
Explanation:
The electrical conductivity of a solution is determined by the concentration of ions in the solution. The acids listed react with water to form ions. In the case of hydrobromic acid, for example, the reaction is as follows:
HBr + H2O >> H3O(+) + Br(-)
Hydrobromic acid and chloric acid are strong acids, meaning the reaction is considered to proceed at 100%. Acetic acid, however, is a weak acid and the reaction with water does not go to completion, so there are less ionic species in the solution of acetic acid, which makes it less electrically conductive.
Answer:
Density is a physical quantity, defined as the ratio of body mass to the volume occupied by this body. The average body density is the ratio of body weight to its volume.
Since the mass in a body can be distributed unevenly, a more adequate model defines the density at each point of the body as a derivative of mass over volume.
Thus, to obtain the density of a sample, its mass must be divided by its volume. Thus, the density of the sample is 1.2 / 1.1, that is, 1.09 g/cm3.
A random person put the answer for you
Molecular Weight (MW) is the sum of the atomic weights/masses (AM) of every atom in a compound or molecule. Thus, we would add the AM of Mg + 2×[N+(O×3)]:
Mg = 24.31
N = 14.01
O = 16
So we have: Mg + 2×[N+(O×3)] = 24.31 + 2×[14.01+(16×3)] = 24.31+2×[14.01+48] = 24.31+ 2×62.01 = 24.31+124.02 = 148.33
C) is the correct answer