Answer:
B : is independent of the natural frequency of the oscillator
Explanation:
You can apply any force you like to a natural oscillator. It is independent of the natural frequency of the oscillator.
The result you get will depend on how the frequency of the applied force and the natural frequency relate to each other. It will also depend on the robustness of the oscillator with respect to the applied force.
Clearly, if the force is small enough, it will have no effect on the oscillator. If it is large enough, it will overpower any motion the oscillator may attempt. For forces in the intermediate range, there will be some mix of natural oscillation and forced behavior. One may modulate the other, for example.
lol what is this question
Answer:
15 less mins will be used by Bob
Explanation:
This is because it takes Tim 2000/50= 40mins to type the whole work
While it takes Bob 2000/80= 25 mins
So the difference 40-25= 15mins
Will be 15mins
Answer:
-0.1875 V.
Explanation:
Using
E₂ = MdI₁/dt........................ Equation 1
Where E₂ = Voltage induced in the second coil, M = mutual inductance of both coil, dI₁ = change in current in the first coil, dt = change in time.
Given: M = 3.00 mH = 0.003 H, dI₁ = (0-2.50) = -2.5 A, dt = 40 ms = 0.04 s.
Substitute into equation 1
E₂ = 0.003(-2.5)/0.04
E₂ = -0.1875 V.
Hence the induced emf = -0.1875 V.
The answer is 149668992000 meters.