Answer:
m = 0.0125 kg
Explanation:
Let us apply the formula for the speed of a wave on a string that is under tension:

where F = tension force
μ = mass per unit length
Mass per unit length is given as:
μ = m / l
where m = mass of the string
l = length of the string
This implies that:

Let us make mass, m, the subject of the formula:

From the question:
F = 20 N
l = 4.50 m
v = 85 m/s
Therefore:

Answer:
0 to 145 degrees
Explanation:
The normal range of flexion and extension is from 0 to 145 degrees.
D is your answer hope this helps
Solution :
Given :
M = 0.35 kg

Total mechanical energy = constant
or 
But
and 
Therefore, potential energy at the top = kinetic energy at the bottom


(h = 35 cm = 0.35 m)
= 2.62 m/s
It is the velocity of M just before collision of 'm' at the bottom.
We know that in elastic collision velocity after collision is given by :

here, 
∴ 

= 0.33 m/s
Therefore, velocity after the collision of mass M = 0.33 m/s
Answer:
Heat has accelerated water atoms enough to break the surface tension which leads the liquid to turn into a gas
Explanation:
The state of a substance depends on the distribution of its atoms, therefore any atmosphere change (in this case heat) enough to change the atoms Distribution results in a change of state.
brainliest please ;)