Force is indirectly proportional to the distance. Therefore when the distance increases the force of attraction increases and the answer would be B
Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
The value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.
<h3>What is impedance Z of the circuit?</h3>
The impedance Z of the circuit is the ratio of voltage amplitude to the maximum current.

Here, <em>V </em>is voltage amplitude and<em> I</em> maximum current.
A resistor with R = 300 Ω and an inductor are connected in series across an ac source that has voltage amplitude 490V. The rate at which electrical energy is dissipated in the resistor is 316 W.
The rate at which electrical energy is dissipated in the resistor is the product of the resistance and the square of current. Thus,

The impedance Z of the circuit is,

Thus, the value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.
Learn more about the impedance Z of the circuit here:
brainly.com/question/24225360
#SPJ4
(a) We will use the equation v = u + at
Initial velocity u = 5.00 m/s
Acceleration a = 0.0600 m/s²
time = 8 min = 8 x 60 = 480 s
Final velocity
= u + at
= 5.00 + 0.0600(480)
= 33.8 m/s
The final velocity is 33.8 m/s
Options A and C are correct but if you compare their masses, person has negligible mass compared to car. So a car at the top of the hill has the most potential energy.