Answer:
Choice a. 1 kg, assuming that all other forces on the object (if any) are balanced.
Explanation:
By Newton's Second Law,
,
where
is the acceleration of the object in
,
is the net force on the object in Newtons, and
is the mass of the object in kilograms.
As a result,
.
Assume that all other forces on this object are balanced. The net force on the object will be
. The net force is constant. Acceleration should also be constant and the same as the average acceleration in the two seconds.
<h3>What is the
average acceleration of this object?</h3>
.
.
<h3>Apply Newton's Second Law to find the mass of the object.</h3>
.
The question is incomplete. The complete question is :
A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformation cycle. At a time, t = 0, a tensile stress of 20 MPa is applied instantaneously and maintained for 100 s. The stress is then removed at a rate of 0.2 MPa s−1 until the polymer is unloaded. If the creep compliance of the material is given by:
J(t) = Jo (1 - exp (-t/to))
Where,
Jo= 3m^2/ GPA
to= 200s
Determine
a) the strain after 100's (before stress is reversed)
b) the residual strain when stress falls to zero.
Answer:
a)-60GPA
b) 0
Explanation:
Given t= 0,
σ = 20Mpa
Change in σ= 0.2Mpas^-1
For creep compliance material,
J(t) = Jo (1 - exp (-t/to))
J(t) = 3 (1 - exp (-0/100))= 3m^2/Gpa
a) t= 100s
E(t)= ΔσJ (t - Jo)
= 0.2 × 3 ( 100 - 200 )
= 0.6 (-100)
= - 60 GPA
Residual strain, σ= 0
E(t)= Jσ (Jo) ∫t (t - Jo) dt
3 × 0 × 200 ∫t (t - Jo) dt
E(t) = 0
The correct answer is option (C) the temperature of the shirt will increase because all wavelengths of light are absorbed by the shirt.
The relationship of heat and light
- Heat is a measure of the movement of particles in the body, the more particles move, the warmer the body becomes.
- When the body absorbs light radiation, its particles vibrate in accordance with the electromagnetic radiation's wavelengths, which causes an increase in the temperature with the increase in particle movement.
- The more wavelengths of radiation absorbed by an object, produces more heat.
Learn more about the Wavelength of light with the help of the given link:
brainly.com/question/13961990
#SPJ4
Answer:
Temperature : 92.9 F
Internal Energy change: -2.53 Btu/lbm
Explanation:
As
mh1=mh2
h1=h2
In table A-11 through 13E
p2=120Psi, h1= 41.79 Btu/lbm,
u1=41.49
So T1=90.49 F
P2=20Psi
h2=h1= 41.79 Btu/lbm
T2= -2.43F
u2= 38.96 Btu/lbm
T2-T1 = 92.9 F
u2-u1 = -2.53 Btu/lbm
Equal to 50
law of reflection: angle of incidence equals angle of reflection