answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!
The energy carried by one photon is directly proportional to its
frequency. So the photon energy is greatest for the electromagnetic
waves with the highest frequency / shortest wavelengths.
That's why when you get past visible light and on up through ultraviolet,
X-rays, and gamma rays, the radiation becomes dangerous ==> each
photon carries enough energy to tear electrons away from their atoms,
ripping molecules apart and damaging cells.
The photon with the highest energy is a gamma-ray photon.
Answer:
Option (e)
Explanation:
If a mass attached to a spring is stretched and released, it follows a simple harmonic motion.
In simple harmonic motion, velocity of the mass will be maximum, kinetic energy is maximum and acceleration is 0 at equilibrium position (at 0 position).
At position +A, mass will have the minimum kinetic energy, zero velocity and maximum acceleration.
Therefore, Option (e) will be the answer.
A spinning force acting upon it